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Abstract

Probing how large populations of neurons represent stimuli is key to understanding sensory representations as
many stimulus characteristics can only be discerned from population activity and not from individual single-units.
Recently, inverted encoding models have been used to produce channel response functions from large spatial-
scale measurements of human brain activity that are reminiscent of single-unit tuning functions and have been
proposed to assay “population-level stimulus representations” (Sprague et al., 2018a). However, these channel
response functions do not assay population tuning. We show by derivation that the channel response function is
only determined up to an invertible linear transform. Thus, these channel response functions are arbitrary, one of
an infinite family and therefore not a unique description of population representation. Indeed, simulations
demonstrate that bimodal, even random, channel basis functions can account perfectly well for population
responses without any underlying neural response units that are so tuned. However, the approach can be
salvaged by extending it to reconstruct the stimulus, not the assumed model. We show that when this is done,
even using bimodal and random channel basis functions, a unimodal function peaking at the appropriate value of
the stimulus is recovered which can be interpreted as a measure of population selectivity. More precisely, the
recovered function signifies how likely any value of the stimulus is, given the observed population response.
Whether an analysis is recovering the hypothetical responses of an arbitrary model rather than assessing the
selectivity of population representations is not an issue unique to the inverted encoding model and human
neuroscience, but a general problem that must be confronted as more complex analyses intervene between
measurement of population activity and presentation of data.
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We recently showed that inverted encoding models conflate signal-to-noise ratio with neural tuning width.
Sprague and colleagues argued that despite this short falling, inverted encoding models “assay population-
level stimulus representations.” However, we show that inverted encoding models reconstruct the model
responses, not the stimulus. This is problematic because the model, as we derive here, is only determined
up to a linear transform and thus the recovered model responses are only one of an infinite family of
equivalent solutions. The approach thus fails to provide a unique assay of population representation. This
problem can be circumvented by extending the approach to estimate the probability of different values of
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There is no cone type in the human retina that responds
selectively and uniquely to the color chartreuse. Nor is
there a cone type for fuchsia, indigo, ebony, crimson,
azure, or cerulean. Not even for the three color primaries:
red, green, and blue. Rather, the relative activity of just
three different receptor types was hypothesized (Young,
1802), and later validated through color-matching exper-
iments (Helmholtz, 1867), to give rise to the multitude of
color sensations. This population code for color contrasts
with a pure labeled line hypothesis in which each color
sensation would be due to a single class of uniquely
devoted neurons (Doetsch, 2000). Even for sensory struc-
tures like the olfactory system that maintain strictly seg-
regated connectivity from odorant receptor types in the
olfactory epithelium to glomeruli in the olfactory bulb,
individual odorants can activate numerous different odor-
ant receptors leading to combinatorial possibilities that
allow discrimination of many tens of thousands of differ-
ent compounds despite there being only a few hundred
distinct odorant receptors in humans (Buck, 2004). These
key findings in sensory physiology firmly place population
coding, that is, the idea that for each distinct sensory
percept there is some invariant spatiotemporal pattern of
activity that can only be discerned from a population
rather than a single neuron, as a fundamental concept of
sensory representation.

Recently, it has been proposed that an inverted encod-
ing model approach to analysis of functional imaging data
from human cortex can assay such “population-level
stimulus representations” (Sprague et al., 2018a). How-
ever, here, we show that it is the model assumed in the
analysis that is reconstructed, not the stimulus. Moreover,
the model is arbitrary in that it is only specified to within a
linear transform and thus unsuitable for assaying popula-
tion representation. Typically, encoding models (Naselaris
et al.,, 2011; Serences and Saproo, 2012) are used as
lower-dimensional representations of complex sensory
stimuli whose responses are then used as linear predic-
tors of cortical responses. For example, a channel encod-
ing model (Brouwer and Heeger, 2009) is one in which a
continuous variable like color (Brouwer and Heeger, 2009,
2013; Yu and Shim, 2017), orientation (Brouwer and
Heeger, 2011; Ho et al., 2012; Scolari et al., 2012; Ester
et al.,, 2013, 2015, 2016; Garcia et al., 2013; Byers and
Serences, 2014; Chong et al., 2016; Bullock et al., 2017;
Yu and Shim, 2017; Liu et al., 2018; Lorenc et al., 2018),
direction of motion (Saproo and Serences, 2014; Chen
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et al., 2015), or spatial location (Sprague and Serences,
2013; Sprague et al., 2014, 2016, 2018b; Samaha et al.,
2016; Vo et al., 2017) is conceived of exciting several
channels with different selectivity for the variable. To take
a specific example, hypothetical orientation channels
(channel basis functions) with different preferred orienta-
tions but identical bandwidths (typically a sinusoidal func-
tion raised to an exponent) are created (Fig. 1). The
selectivity of the orientation channels are meant to mimic
the known selectivity of individual primary visual cortex
neurons (Campbell et al., 1968; Rose and Blakemore,
1974; Watkins and Berkley, 1974; Gardner et al., 1999;
Ringach et al., 2002; Finn et al., 2007). For each oriented
stimulus that is presented, one can calculate how the
hypothetical channels would respond. Across many pre-
sentations of different stimuli, a matrix of channel re-
sponses is constructed and regression coefficients
(weights) can be calculated that best predict each voxels’
response in a functional magnetic resonance imaging
experiment. After fitting these regression coefficients on a
training dataset, predicted channel responses can be
computed by inverting the procedure for some left-out
dataset, by multiplying the pseudo-inverse of the voxel
regression coefficients with the observed voxel re-
sponses. If there is reliable selectivity in the population
response for the stimulus variable, the resulting predicted
channel responses will exhibit a tuned profile that approx-
imates the channel basis functions built into the analysis.

This approach has been called an inverted encoding
model (Sprague et al., 2018a) to emphasize that it is an
extension to the more typical approach which uses an
encoding model to predict BOLD responses (Dumoulin
and Wandell, 2008; Kay et al., 2008; Brouwer and Heeger,
2009) without then inverting the procedure to estimate the
model responses. The tuned profiles that inverted encod-
ing models produce have been used to characterize pop-
ulation stimulus representations across different task
contexts such as during working memory (Ester et al,,
2013, 2015; Foster et al., 2016; Sprague et al., 2016; Yu
and Shim, 2017; Lorenc et al., 2018) or comparisons
across different allocations of attention (Scolari et al.,
2012; Garcia et al., 2013; Sprague and Serences, 2013;
Ester et al., 2016). Simulations show that these predicted
channel responses can index neural tuning in that the
widths of the functions change with the width of the
underlying selectivity of neurons in the population. How-
ever, the predicted channel response functions also
change width as a function of the overall signal-to-noise
ratio of the measurement, thus conflating neural selectiv-
ity with noise (Liu et al., 2018; Sprague et al., 2018a).

If these predicted model responses are to be taken as
measures of population stimulus representations, it raises
the question as to what exactly a “stimulus representa-
tion” is. A long tradition in physiology has measured
neural responses as sensory stimuli are systematically
varied to assess the relationship between neural response
and stimulus properties. Perhaps the most fundamental
relationship is that of the receptive field (Hartline, 1938),
which is now commonly used in a stimulus space-referred
(rather than the original sensory-organ referred) fashion,
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Figure 1. Overall schematic of the channel encoding model and its applications. A number of stimuli varying along a dimension of
interest (in this case, orientation) are presented (“stimuli”) and neural responses are measured. The measured neural responses are
assumed to reflect summed activity from a set of underlying mechanisms (“channels”), which are characterized by basis functions that
resemble tuning curves of sensory neurons. Each channel’s response to each stimulus can be calculated based on the channel’s
basis function (“channel responses”). These channel responses are multiplied by a weight matrix (“weights”) that reflects the relative
contribution of each channel in each voxel (i.e., w;; is the contribution of i channel in j voxel). The weighted sum of the channel
responses produces the measured neural response (“BOLD response”). By calculating the weights and inverting the model on
independent datasets, the inverted encoding model recovers a set of channel responses, whereas by taking into account the structure
of the model, one can also reconstruct the stimuli that most likely generated the measured neural responses. To facilitate visualization,
each channel and its associated responses and weights are depicted in a different color.

as when it describes the location within the visual field
from which a response can be elicited. As physiologists
discovered more complex response properties of single
neurons to stimulus features such as orientation (Hubel
and Wiesel, 1959, 1962), it became common to charac-
terize neural tuning functions. That is, the response as
measured as a function of parametric variation of a stim-
ulus, such as orientation (Campbell et al., 1968; Rose and
Blakemore, 1974; Watkins and Berkley, 1974; Gardner
et al., 1999; Ringach et al., 2002; Finn et al., 2007). Tuning
functions have been used to characterize the stimulus
representation not only by the firing rate of single-units,
but also by other neural measures such as membrane
potentials (Finn et al., 2007; Priebe and Ferster, 2012),
EEG potentials (Maffei and Campbell, 1970; Regan and
Regan, 1987; Baker et al., 2011), reflectance changes
from intrinsic signals (Grinvald et al., 1986; Swindale et al.,
2003), fluorescence signals from voltage-sensitive dyes
(Benucci et al., 2007; Chen et al., 2012), and calcium-
imaging measurements (Ohki et al., 2005). Even for BOLD
activity averaged across a visual area, parametric sensi-
tivity to the strength of a visual stimulus can be assessed
by plotting response magnitude as a function of stimulus
properties like contrast (Tootell and Taylor, 1995; Boynton
et al., 1996, 1999; Tootell et al., 1998; Logothetis et al.,
2001; Avidan et al., 2002; Olman et al., 2004; Gardner
et al., 2005; Pestilli et al., 2011) or motion coherence
(Rees, 2000; Braddick et al., 2001; Costagli et al., 2014;
Birman and Gardner, 2018), which are expected to result
in monotonic increases in response of all neurons in a
population. Typical for all of these characterizations of
stimulus representation is that they report a measurement
of neural activity as a stimulus property is systematically
varied. Some tuning functions may be derived through a
number of analytic steps, such as when computing a
tuning function (DeAngelis et al., 1993; Gardner et al.,
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1999) from a reverse-correlation mapped receptive field
profile (Jones and Palmer, 1987) or when Fourier compo-
nents are computed in a frequency-tagged EEG measure-
ment (Regan and Regan, 1987; Baker et al., 2011; Tsai
et al., 2012; Verghese et al., 2012). Nonetheless, the
interpretation is straight-forward: the representation char-
acterizes neural response as a function of stimulus varia-
tion.

While inverted encoding models can generate a pre-
dicted channel response function visually similar to these
classically measured tuning functions, the ordinate of the
graph is no longer a direct measurement of neural activity.
Indeed, a rather odd feature of the literature using inverted
encoding model is that there is a lack of consensus over
what units to label the ordinate with. It has been alter-
nately labeled as arbitrary units (Brouwer and Heeger,
2011; Ho et al., 2012; Ester et al., 2013; Garcia et al.,
2013; Byers and Serences, 2014; Chong et al., 2016),
without any specified units (Sprague and Serences, 2013),
normalized units (Saproo and Serences, 2014) or in the
units of the measurement, for example, as the percentage
signal change of BOLD response (Brouwer et al., 2015), or
the power of an EEG measurement (Samaha et al., 2016;
Bullock et al., 2017), or normalized BOLD (Chen et al.,
2015) or BOLD z score (Sprague et al., 2014, 2016, 2018b;
Ester et al., 2015; Vo et al., 2017), or relative magnitude
(Scolari et al., 2012; Chong et al., 2016; Yu and Shim,
2017). The units of the ordinate are arbitrary in the sense
that they can be manipulated by simply changing the
maximum response of the modeled channels. Typically
set to a unit value, if instead, the maximum channel
response is set to two, in the ideal case of no noise in
response or measurement, the inverted encoding model
will produce predicted channel response functions with
doubled height. Making the channel response functions to
have a maximum response of forty-two will produce pre-

eNeuro.org



eMeuro

dicted values that will scale accordingly, without any
change in the underlying measured responses. Thus, de-
spite being linearly weighted responses, because the
maximum channel response can be arbitrarily scaled, the
predicted channel response no longer reflects the units of
the measurement. Instead, this arbitrary scaling of the
ordinate with model assumptions can be avoided by sim-
ply plotting the ordinate in proportion or percentage of the
full model response (Liu et al., 2018). Because the in-
verted encoding model is simply a linear regression that
attempts to predict channel responses from BOLD re-
sponses (Fig. 1), in the limit of no noise, the predicted
channel response functions should approach the full am-
plitude of the model basis functions. Put another way,
imagine an encoding model in which one predicts BOLD
response magnitude from the age of the subject. If one
were to invert this encoding model, then BOLD responses
would be used to predict age, and the ordinate would be
in units of what is being predicted, years of age, rather
than in the units of the predictor, percentage signal
change. Viewed as producing proportion of the full model
response, the predicted channel response function lies in
stark contrast to other tuning functions in which the ordi-
nate is a measurement of neural activity. Thus, the output
of the inverted encoding model, i.e., the channel response
function, is not a measured response against different
stimulus values. Instead, it is the predicted response of a
hypothetical modeled channel.

To better explicate the distinction between a classical
tuning function and the predicted channel response func-
tion, it is instructive to consider a, seemingly, extreme
case of poor model specification. We therefore built and
tested a channel encoding model on a synthetic data set
using published techniques (Liu et al., 2018), except that
we changed the channel basis function to have a bimodal
shape (Fig. 2A). We ran the channel encoding model on
simulated data, using procedures identical to those pre-
viously reported (Liu et al., 2018). Briefly, the model con-
tained 100 voxels, where each voxel was assumed to
contain a random proportion of neurons sampled from a
bank of identical, orientation tuned neurons with uniformly
distributed orientation preference. Neural tuning functions
were circular Gaussians as implemented by von Mises
functions. The random proportions in each voxel consti-
tute a weight vector that specifies the contribution of each
neuron to the voxel’s response. When presented with a
stimulus, the response of each neuron was calculated
using its neural tuning function, and the response of each
voxel was calculated as a weighted sum of the neuronal
response according to the voxel’s weight vector. Inde-
pendent Gaussian noise with standard deviation system-
atically varied to simulate different amounts of noise was
added to this response to yield a final response of each
voxel. We then simulated an experiment in which eight
evenly spaced orientation stimuli were each presented 27
times (Liu et al., 2018) to generate BOLD responses for
each trial.

Despite the fact that simulated responses were gener-
ated by neurons with unimodal tuning functions, the in-
verted encoding model with bimodal channels can
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Figure 2. Simulation results with a bimodal basis function. A,
Depiction of eight channel basis functions, each one with two
peaks positioned ~67° apart. To facilitate visualization, the cen-
ter channel (cyan) is plotted in a thicker line. The channels are
obtained by multiplying the original channels (Fig. 1) with a matrix
that transforms the unimodal to a bimodal shape. B, Channel
response functions derived by the inverted encoding model at
high noise (left panel) and low noise (right panel) levels. C,
Posterior probability of the stimulus derived by the Bayesian
approach at high noise (left panel) and low noise (right panel)
levels.

produce a bimodal channel response function. For exam-
ple, with a unimodal neural tuning width of 40° (half-width
at half-height of the von Mises) and at low noise level (high
r?), channel response function had a bimodal shape (Fig
2B, right panel), which is expected given that we have
shown that the predicted channel response function con-
verges to the channel basis function at low noise level (Liu
et al., 2018). We also note that at a higher noise level (low
r?), the channel response appeared unimodal (Fig. 2B, left
panel). Critically, the predicted channel response function
does not reflect the underlying neural tuning of the simu-
lated data. The bimodal shape of the predicted channel
response function is entirely a consequence of the choice
of encoding model basis functions, not of any particular
consequence of the modeled responses. This is troubling
for an interpretation of the channel response function as a
measure of population stimulus representation, because it
simply recapitulates the model assumptions, in this case
of bimodality, rather than any intrinsic property of the
simulated data. While the simulations show that a bimodal
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Figure 3. lllustration of the behavior of the inverted encoding model under transformed channel basis functions. The simulated BOLD
responses (A) are generated as before, assuming a set of unimodal neuronal tuning functions. In the first case, standard channel basis
functions (depicted in B) are used to estimate the weights and invert the model (depicted by the horizontal arrow), which gives rise
to a set of channel response functions (C). Here, we depicted both individual channel responses (colored lines) and the shifted and
averaged channel response (thick gray line); the latter is typically reported in the literature, and duplicated in H. In the second case,
the standard channel basis functions are multiplied by a transformation matrix filled with random numbers (depicted in the red matrix)
to generate a set of new basis functions (D). After model inversion, individual and averaged channel responses are seemingly random
(E). In the third case, a set of bimodal basis functions (F; same as Fig. 2A) were obtained by multiplying the standard basis functions
with an appropriate transform (depicted in the blue matrix), which yielded bimodal channel response functions after model inversion
(G). When the individual channel responses in E, G are multiplied by the inverse of their respective transforms, shifted, and averaged,
an identical channel response is obtained as in the standard unimodal case (H). To facilitate visualization, these simulations were
conducted assuming zero noise. The same results also hold under non-zero noise conditions.

channel response function emerges as noise is reduced, it
would clearly be a mistake to use this analysis and con-
clude that the population stimulus representation has
changed from a unimodal to a bimodal function across
these two simulated conditions.

While one might think that the issue is one of poor
model specification that could be resolved through ap-
propriate usage of model comparison statistics, it is not.
In fact, the amount of variance accounted for by the
encoding model using the typical unimodal functions (Fig.
1) and the bimodal functions is identical. Indeed, the
bimodal encoding model, though obviously “wrong,” was
constructed as a linear transform of the “right” unimodal
model and thus is mathematically interchangeable (Fig.
3B,F). More specifically, the unimodal and bimodal chan-
nel basis functions were defined as follows:

R, = SC; ()
and

R, = SC,
where

C,=C,P

Where the Rs are n X k (n = number of trials, k =
number of channels) matrices of channel response func-
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tions (Fig. 1, channel responses). The stimuli S are pro-
jected onto the channel basis functions C. Sisan x s
(s = number of different stimulus types) stimulus matrix
with zeros everywhere except for a one in each row at the
appropriate column to indicate which stimulus type was
presented during that trial. The Cs are s X k matrices
which contain channel basis functions in the columns
evaluated at each of the stimulus values. The subscripts
indicate the unimodal (1) and bimodal (2) channel basis
functions. P is an invertible channel conversion matrix (k
X k) which we have designed to convert the unimodal
channel basis functions into bimodal functions. Thus, the
channel response matrices for the unimodal and bimodal
basis functions are related as follows:

R, = SC, = SC,P = R,P @)

By construction then the unimodal and bimodal channel
basis functions span the same linear subspace and there-
fore both encoding models account for the same amount
of variance. In fact, the weight matrices for the two mod-
els are related by a linear transform. To see this, consider
the equations for how the encoding model accounts for
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BOLD responses (Brouwer and Heeger, 2009; Serences

and Saproo, 2012; Liu et al., 2018):
B =RW, +n @)
and
B =RW, +n

Where B is a n X v (v = number of voxels) matrix of
BOLD responses for all trials, the Ws are k X v weight
matrices and 7 is zero mean Gaussian noise. The weight
matrices can be estimated using least squares estimation
from a training set of BOLD data B; (Brouwer and Heeger,
2009; Serences and Saproo, 2012; Liu et al., 2018):

W, = (RjR,)'RB; (4)
and
W, = (RIR,) 'RiB:

Where the superscript T indicates transpose and -1
indicates inverse. The relationship between the estimated
weights for the model with the bimodal basis functions,
W,, and the unimodal functions, W, can be derived as
follows:

W, = (R£R2)71R£BT

W, = ((RP)'RP)~"(R:P)B;
by substitution of Equation 2

W, = (P"RIR,P)~'P'RIB;
by expansion of transpose

W, = PY(RIR,)'"P"'P'RIB;
by expansion of inverse

W, = P~'(RIR,)"'RIB;
multiplication by inverse is identity

W, = P "W, (5)
by subst|tut|on of Equatlon 4

Thus, in sum, the unimodal and bimodal channel basis
functions span the same subspace, account for the same
amount of variance in the encoding model, and the esti-
mated weight matrices are related by a linear transform.

In fact, both models will produce identical predictions
for stimulus test values that were never even used to train
the models. Let B, ,, and B, ,, be the predicted BOLD
responses for the unimodal and bimodal models, respec-
tively, for test stimuli S, that were left out of the training
set. Note that S, will have dimensions ng, X s for the
number of left out stimuli and the number of types of left
out stimuli. The channel basis functions C; ;,and C, ;o will
have dimensions s,, X k because they are evaluated at
each of the s, left out stimulus values. By Equations 1, 3,
the predicted BOLD responses for the unimodal and bi-
modal models are as follows:

March/April 2019, 6(2) e0363-18.2019
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and
Bz,Lo = SLOC2,LOW2

We can show that B, ,, and B, ,,, are equal as follows:

B2,Lo = SLOC2,LOW2

BZ ,LO SLOC:1 LOPW2
by substitution of Equation 1

Bso = SLOC1,LOPP_1W1
by substitution of Equation 5

o BZLLO = SLOC1,LOW1 ) )
multiplication by inverse is identity

B2,LQ = B1,Lo .
by substitution of Equation 6

Thus, both encoding models produce exactly the same
predictions for BOLD responses even for stimulus test
values for which the models were not trained on.

Not only are the unimodal and bimodal encoding mod-
els interchangeable and produce identical predictions, the
inverted encoding models result in estimated channel
response functions that are a linear transform of each
other. Consider the way in which channel response func-
tions are estimated from a held-out validation BOLD data
set, B, (Brouwer and Heeger, 2009; Serences and Sap-
roo, 2012; Liu et al., 2018):

lf?1 = BVWI(W1W1T)71 (7)
and
R, = BW(W,W5)

The relationship between the estimated channel re-
sponse functions using the inverted encoding model with
unimodal, R,, and bimodal, R,, channel basis functions
can be derived as follows:

R, = B (W, 5) "

R, = ByP W) (P Vi (P W)
by substitution of Equation 5

R, = BWIP'(P~ "W, WiP~1T) "
by expansion of transpose

R, = BWIP™ (P~ "W, WPT-1) "
Interchange transpose and inverse

R, = BMWIPT'PT(W,W7)'P
by expansion of inverse

R, = BMI(W,W)'P
multiplication by inverse is identity
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R, = R,P ®)
by substitution of Equation 7

Thus, one can take the reconstructed bimodal channel
response functions from the inverted encoding model
analysis and turn them back into unimodal channel re-
sponse functions by multiplying them by the inverse of the
linear transform used to create the bimodal channel basis
functions (Fig. 3G,H).

As the recovered channel response functions from the
inverted encoding model are only constrained up to an
invertible linear transformation, the channel response
functions can even be converted randomly. As long as the
transformation to the random channel basis functions is
an invertible transformation, the analysis will result in
estimated channel response functions that can be con-
verted through a linear transform back into the unimodal
functions (Fig. 3D,E). Indeed, the channel response func-
tions can be converted between any of the infinitely many
equivalent channel response functions related by invert-
ible transforms. In this sense, the particular choice of
channel basis functions to display within these infinite
possibilities is a completely arbitrary assumption of the
analysis and cannot be interpreted as uniquely indicative
of the population representation.

This problem of recapitulating the arbitrary model as-
sumptions with an inverted encoding model can be cir-
cumvented by using a related Bayesian approach (van
Bergen et al., 2015; van Bergen and Jehee, 2018) which
computes the posterior probability of the stimulus given
the measured responses. The Bayesian approach follows
the same structure as an inverted encoding model anal-
ysis, but characterizes the residual variance as due to
independent, identically distributed noise from the chan-
nels and independent and correlated components of
voxel noise (for our voxel model we did not simulate
correlated voxel noise so we did not fit this component).
Having fit both the channel model and the noise, the
probability of producing any particular response given a
stimulus can be computed. Using Bayes’ rule and a uni-
form prior, the posterior probability of any stimulus given
a particular response can then be computed. Using this
approach with the exact same simulated data and bi-
modal encoding model, we found a posterior always cen-
tered at the actual stimulus orientation, with its spread
reflecting the uncertainty (Fig. 2C). Similar behavior was
observed over a range of combinations of parameters.
This approach highlights a useful interpretation of these
model responses. The posterior function represents what
probability one could guess the stimulus orientation after
having observed a BOLD response. The wider the func-
tion, the more uncertain the stimulus orientation is. Nota-
bly, the approach yields a unimodal posterior function
regardless of whether the channel basis functions are
unimodal (van Bergen et al., 2015; Liu et al.,, 2018) or
bimodal as simulated here. This is a sensible outcome as
it shows the peak probability at the actual stimulus orien-
tation which decays uniformly around that orientation.
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The reason for this striking difference in which the
Bayesian approach produces a unimodal posterior and
the inverted encoding model yields a bimodal channel
response function is simply because the Bayesian ap-
proach aims at stimulus reconstruction rather than model
reconstruction (Fig. 1). Given a neural response and a
model for how that response could be generated, stimu-
lus reconstruction attempts to determine what stimulus
occurred (Stanley et al., 1999). To simplify the task, iden-
tification of the most likely stimulus among a finite number
of possibilities (Kay et al., 2008) or classification into a
number of discrete categories (Haxby et al., 2001; Kami-
tani and Tong, 2005) and/or the use of more simplified
stimuli (Miyawaki et al., 2008) have all been used. There
can be no claim about whether that representation of the
stimulus is used in the brain, only that information is
available in the measured responses that can be used to
recreate the stimulus. Reconstruction, identification and
classification have been used in many experiments to
compare sensory responses under different cognitive
states like attention (Kamitani and Tong, 2005, 2006;
Jehee et al., 2011; Dobs et al., 2018) or working memory
(Harrison and Tong, 2009), examine the influence of priors
and expectancy (Kok et al., 2012, 2013; Vintch and Gard-
ner, 2014) and a wide variety of other purposes. Channel
encoding models have also been fruitfully used for stim-
ulus reconstruction, for example by reconstructing color
values that the model was never trained on (Brouwer and
Heeger, 2009).

The inverted encoding model approach does not aim to
reconstruct the stimulus, but rather aims to reconstruct an
intermediate step of the analysis: the encoding model’s
representation of the stimulus. The parameters of the
tuning functions of different channels in the encoding
model are often taken to mimic the selectivity of neurons
or groups of neurons, yet the reconstructed channel re-
sponse functions do not unambiguously reflect the tuning
properties of these neurons (Liu et al., 2018). Therefore,
the predicted channel response that the analysis re-
creates exists only as a theoretic construct; it is neither
inherent in the stimulus nor in the population representa-
tion. As demonstrated above, a bimodal channel re-
sponse can be reconstructed from a population
representation that was built from unimodal representa-
tions of the stimulus. However, the Bayesian analysis,
despite using the same bimodal encoding model, recov-
ers a unimodal posterior because it aims to reconstruct
the stimulus rather than the model. While channels for
basic stimulus properties like color, orientation and spatial
frequency can be informed by existing physiologic litera-
ture, model specification is less well constrained for more
complex stimulus properties and the possibility of poor
model specification giving rise to misleading results be-
comes more likely. To be clear, building encoding models
based on well-understood tuning functions even with the
ambiguities described here is not necessarily problematic
as it can be a useful way to reduce the dimensionality of
the stimulus space in a principled way. However, inverting
the encoding model even for these cases where the
single-unit tuning functions are well known, simply reca-
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pitulates the assumptions about the channel basis func-
tions, such as their tuning width, and therefore does not
provide a useful assay of population tuning. Thus, in-
verted encoding models produce a result that is not in-
terpretable as a population nor a neural tuning function,
but instead is an estimate of the arbitrary model basis
function.

Rather than inverting the encoding model to display the
fit to the intermediate model assumptions, examining the
weights that are needed to explain population responses
can be informative about the population representation.
That is, encoding models without inversion, have often
been used to understand population representations. For
example, a Gabor wavelet model can be used to encode
visual stimuli into spatially local filters with different orien-
tation and spatial frequency selectivity meant to mimic the
selectivity of primary visual cortex neurons (Kay et al.,
2008). After fitting such a model, the location, orientation
and spatial frequency selectivity can be determined for
each voxel, allowing for retinotopic mapping of visual
cortex and evaluation of the amount of orientation and
scale information available in voxel representations. Sim-
ilarly, a population receptive field model which encodes
visual stimuli like high contrast bars into Gaussian recep-
tive fields (Dumoulin and Wandell, 2008) with an exponen-
tial non-linearity (Kay et al., 2013) is routinely used to
define retinotopic field maps (Benson et al., 2018). More
complex encoding models of semantic category of visual
objects (Naselaris et al., 2009; Huth et al., 2012) or lan-
guage (Huth et al., 2016) have also been fit to voxel
responses and examination along which dimensions of
the model space the fitted weights vary the most can be
used to understand the nature of what is represented.

That inverted encoding models recover the model re-
sponses, not the stimulus, is not to say that they have no
useful purpose. Inverted encoding models have been
fruitfully used to tease apart responses to different as-
pects of a compound stimulus into target and mask re-
sponses to evaluate predictions of normalization models
(Brouwer and Heeger, 2011; Brouwer et al., 2015). Recon-
structing model responses might be particularly important
in a brain machine interface, where the model might
include, for example, the response of different actuators
for a robotic arm. Inverting a channel encoding model also
allows for reconstruction of stimuli for which the model
has never been trained, by comparing the recovered
channel responses to those that would be elicited by
untrained stimuli and selecting the stimulus whose chan-
nel response is most correlated with the one recovered by
the inverted model (Brouwer and Heeger, 2009; Lorenc
et al., 2018). Summing model receptive fields weighted by
the recovered channel responses (Sprague and Serences,
2013; Sprague et al., 2014, 2016, 2018b; Samaha et al.,
2016; Vo et al., 2017) is a computation similar in spirit to
a vector-average read-out (Georgopoulos et al., 1986; Lee
et al., 1988; Gardner et al., 2004) in that it allows each
channel to “vote” for its preferred spatial location accord-
ing to its reconstructed response. Thus, this approach
can be viewed as a further elaboration of the inverted
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encoding model as it aims to determine the expected
population read-out of a stimulus compatible with the
measured response, rather than a model reconstruction.
However, unlike the Bayesian approach (van Bergen
et al.,, 2015; van Bergen and Jehee, 2018), it does not
provide an estimate of how likely any stimulus is given the
measured response. Despite these valuable usages of
inverted encoding models, when the model inversion re-
covers theoretical channel responses such as orientation
tuned channels, the properties of those channel re-
sponses should be considered a property of the model
and the estimation process and not as a measurement of
underlying selectivity of the hypothetical neural tuning
functions (Liu et al., 2018) or the population. As a specific
example, the tuning width of the channel responses
should not be taken as a measure of population selectivity
as it will depend on the tuning width of the particular (and
arbitrary) channel basis functions used.

Our results here show that channel basis functions are
only determined up to an invertible linear transform, but
this does not preclude comparison of encoding models
whose basis functions are not related by an invertible
linear transform. In such cases, standard statistical model
comparisons that take into account the number of param-
eters and the goodness-of-fit can be used to select the
best fitting model. Because these non-linearly-relatable
models make different predictions, one can also compare
model predictions to other behavioral and neural mea-
sures of perceptual space to select models. As a concrete
example, Brouwer and Heeger (2009) compared a six-
channel hue tuning model with a four-channel cone op-
ponency tuning model and concluded that the former was
more consistent with the data in hV4. This is possible
because these two models are not related by an invertible
transform.

Proper inferences from computational modeling of data
can only be achieved if the limits imposed by these tech-
niques are explored and recognized by the communities
that use them. Our results can be considered an example
of this principle. Another analogous example to the issue
that we describe here can be found in the theory and
experiments of population coding of color. Indeed, the
trichromatic color theory developed from the work of
Young and Helmholtz (Young, 1802; Helmholtz, 1867),
can only establish color matching functions up to a linear
transform because they depend on the spectral power
distribution of the three primary lights used in the match-
ing experiment (Wandell, 1995). However, because the
linear assumptions of color matching theory were known
for over a century (Grassmann, 1854), experimenters were
able to make the correct inference that the cone sensitiv-
ities in the primate retina would only need to match up to
a linear transform (Baylor et al., 1987) to the color match-
ing functions measured perceptually. Thus, the linking
hypothesis between population coding in the retina and
perception of colors was validated only because there
was clear understanding of the limits imposed by the
underlying theory.

While sophisticated new computational techniques
such as inverted encoding models offer the possibility of
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new discovery from large and complicated datasets, they
also intervene many layers of mathematical analysis be-
tween measurement and data presentation, thus creating
interpretational challenges. This is not a challenge unique
to human imaging, but shared with other analyses of
population activity measures including electrophysiologi-
cally or through calcium imaging. Whether a computa-
tional analysis is discovering structure within data or
imposing it can at times be difficult to adjudicate. For
example, dimensionality reduction techniques have been
used to uncover rotational dynamics in motor preparatory
population activity (Churchland et al., 2012), but it could
be that the computational techniques are able to extract
dimensions of rotational dynamics whether or not they are
in the data. One possible way to address this question is
by the use of carefully designed surrogate data sets which
have various components of population activity removed,
to understand where effects are coming from (Elsayed
and Cunningham, 2017). The larger question in assessing
population stimulus representations remains as to what
information is carried in a population that is not inherent in
the single-unit representation. Indeed, even theoretic no-
tions that try to decompose information into components
that are represented by individual neurons and ones that
are synergistically represented have difficulty in formally
defining what is meant by synergistic information that
arises from the population but is not in the individual units
(Lizier et al., 2018). Moving forward, our analyses and
understanding of population stimulus representations will
need to derive from agreed on definitions for what is
meant by population representations and from consider-
ations of how much analyses impose on structure versus
how much they reveal.
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